

OBJECTIVES

- Distinguish the various forms of Vitamin D
- Discuss the metabolism of Vitamin D
- Assess Vitamin D deficiency & risk factors

IN THE BEGINNING...

- Adequate diet in 19th century
- I 2% protein
- -5% minerals
- 10-30% fat
- -60-70% carbohydrates
- What caused diseases such as rickets, scurvy, and beri-beri?

EARLY EXPERIMENTS

- Fed appropriate proportions to animals -Low survival
- What was missing from this diet?
- Other findings supported existence of essential micronutrients in diet

CASE OF BERI-BERI

- High incidence among prisoners in Dutch East Indies
- These prisoners were fed predominantly a diet of polished rice
- Providing the hulls of rice got rid of beri-beri
- Conclusion: Polished rice contained toxin that was neutralized by a substance in the hull

SCURVY PREVENTION

• Discovery of substance that prevent scurvy in sailors -Substance in citrus fruits

German chemist, Funk, stated that a "vital amine" present in foods was required for health and survival

STUDY AT UNIVERSITY OF WISCONSIN

- Experiment on diary cattle
- Fed four groups same proportions
- Each group's entire ration from a single grain corn, oats, wheat, or mixture
- Outcomes:
 - -Corn diet \rightarrow reproduced & produced large quantities of milk
 - –Wheat diet ightarrow poor outcomes; many failed to survive
 - –Oats diet ightarrow results between that of corn and wheat

FURTHER STUDIES

- Used white rat to study dietary components
 - Demonstrated that butter fat and cod liver oil contained a factor that prevented eye disease and supported growth
 - This was a fat soluble substance
- Discovered water-soluble factor that prevented neurological disease similar to beri-beri
- Another water soluble factor was found to prevent scurvy

"THE ENGLISH DISEASE"

- Sir Edward Mellanby concerned with high incidence of rickets in United Kingdom
 - -Could rickets be due to a dietary deficiency?
- Fed Scottish diet (primarily oats) to dogs that were inadvertently kept indoors
 - -Developed rickets
- -Cured with cod liver oil
- Must be Vitamin A!

"THE ENGLISH DISEASE"

- McCollum tested hypothesis about Vitamin A deficiency linked with rickets
- Destroyed the Vitamin A in cod liver oil
 -No longer prevented xerophthalmia or Vitamin A deficiency
 - -HOWEVER...still cured rickets

HEALING RICKETS WITH UV LIGHT

- Physicians and researchers in Vienna & England noted that sunlight cured rickets
- Study at Univ. of Wisconsin
- -During summer goats had positive calcium balance
- –Goats brought indoors in winter ightarrow calcium decreased
- -Sunlight ightarrow calcium retention

HEALING RICKETS WITH UV LIGHT

- Observation of goats led to further studies with rats
- Irradiated rats, their food, and air in their cages -Irradiation in rat and food prevented/cured rickets
- Found that this activity was associated with nonsaponifiable lipid fraction
 - -Concluded that inactive lipid in diet & skin converted by UV light into active substance
- Process patented \rightarrow industry had cure for rickets as major medical problem

IDENTIFICATION OF VITAMIN D

- ${\scriptstyle \bullet}$ Vitamin ${\rm D}_2$ isolated from irradiation mixture of ergosterol
- In 1935 \rightarrow 7-dehydrocholesterol isolated
- In 1937 \rightarrow Vitamin D₃ identified
- D₃ natural form of Vitamin D
- Formed in skin as result of UV irradiation of 7-dehydrocholesterol
 Is Vitamin D truly at vitamin?
- Is it normally produced in skin, not in natural foods?

VITAMIND FORMS Ergocalciferol (Vitamin D₂) • Not naturally occurring in body Cholecalciferol (Vitamin D₃) • Naturally occurring • Made in skin & found in foods Calcidiol (25-hydroxyvitamin D₃) • Prohormone made in liver • Low biologic activity • Major circulating form → often measured Calcitriol (1.25-dihydroxyvitaminD₃) • Activated from made in kidneys

ROLE OF VITAMIN D

Ergocalciferol (Vitamin D₂) Cholecalciferol (Vitamin D₃) Calcidiol (25hydroxyvitamin D₃) Calcitriol (1,25-

Absorption of calcium & phosphorus Helps body absorb calcium Not an active form of Vitamin D until the

hydroxyvitamin D₃) conversion to Calcitriol Calcitriol (1,25dihydroxyvitaminD₃) Enhance effect of PTH on bone

**Increases calcium in blood Regulates cell growth Immunomodulation

Darker skin (more melaning
iterferes with cutaneous
synthesis of Vitamin DImage: Strain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin DAfrican Americans with drass
shin once require **5-10 times**
the amount of sunlight
necessary to produce similar
to sunlight sill not as much
serum concentrations of
Vitamin DImage: Strain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin Dmanual differenceStrain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin Dmanual differenceStrain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin Dmanual differenceStrain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin DImage: Strain of the synthesis of Vitamin Dmanual differenceStrain of Strain of Vitamin DImage: Strain of Strain of Vitamin DImage: Strain of Strain of Strain of Vitamin Dmanual differenceStrain of Strain of Strain of Vitamin DImage: Strain of Strain of

7-dyhydrocholesterol declines as we age

- 70 year old & 25 year old exposed to same sunlight exposure
- 70 year old makes ~25% of vitamin D₃ as the 25 year old

nd vitamin D for bone health and prevention of autoimmune dise

VITAMIN D RECEPTORS

• 36 tissues express VDR

• Potential to produce biological response depends on availability of Vitamin D3

Adipose – adrenal – bone – bone marrow – brain – breast – cancer cells – cartilage – colon – eggshell gland – epididymis – hair follicle – intestine – kidney – liver – lung – lymphocytes – muscle – osteoblast – ovary – pancreas B cells – parathyroid – parotid – pituitary – placenta – prostate – retina – skin – stomach – testes – thymus – thyroid - uterus

IT'S MORE THAN JUST CALCIUM REGULATION...

- The activity of Vitamin D3 expands beyond the regulation of calcium homeostasis
- Currently recognized to play vital roles in: - Adaptive immunity
 - Tumor suppression
 - Insulin secretion by β -pancreatic cells
 - Cardiac and blood pressure regulation
 - Brain and fetal development

Recognized as **MAJOR** health problem for adults >50 years of age

An estimated **ONE BILLION** people worldwide across all ethnicities and age groups have a **vitamin D deficiency**

VIT D DEFICIENCY HIGHEST AMONGST:

- Elderly
- Institutionalized (67%)
- Hospitalized (57%)
- 2/3 of healthy young adults in Boston were vitamin D deficient at end of winter

A GLANCE AT THE DATA...

- >50% African Americans in US at risk
- Young adults that seldom see daylight or always use sunscreen at risk
- \bullet Boston \rightarrow 84% African American men and women over age 65 were deficient
- \bullet Women and children in Saudi Arabia \rightarrow high prevalence of osteomalacia and rickets
- 32% students & doctors at Boston Medical Center were vitamin D deficiency at end of winter

LIVING AT HIGHER LATITUDES

- Increased cases of Type 1 diabetes, Crohn's disease, Multiple Sclerosis
 - –Living below 35° latitude first 10 years of life \downarrow risk of MS 50%
- Increased risk of hypertension and CV disease
- Increased incidence of schizophrenia and depression

IMMUNE SYSTEM IMPAIRMENT

- VDR expressed on B cells, T cells, and Ag presenting cells - All capable of synthesizing ACTIVE vitamin D
- Modulates immune cell function
- Influences natural & adaptive immunity
- Lack of vitamin D \rightarrow poor immune function

RECOMMENDED DAILY INTAKE

• Two sets of guidelines – Institute of Medicine (IOM) – Endocrine Society

	Ages I-18	Ages 19-70	Ages 71+
	RDA (IU/day)	RDA (IU/day)	RDA (IU/day)
IOM	600	600	800
Endoc. Society	600-1000	1500-2000	1500-2000

US ENDOCRINE SOCIETY CLASSIFICATION

Deficiency	<20 ng/mL
Insufficiency	21-29 ng/mL
Sufficiency	>30 ng/mL
Toxicity	>150 ng/mL

Source	Approx Vitamin D content	
Salmon		
Fresh, wild (3.5 oz)	600-1000 IU	
Fresh, farmed (3.5 oz)	100-250 IU	
Canned (3.5 oz)	300-600 IU	
Sardines, canned (3.5 oz)	300 IU	
Mackeral, canned (3.5 oz)	250 IU	
Tuna, canned (3.6 oz)	230 IU	
Fortified milk (8 oz)	100 IU	
Fortified orange juice (8 oz)	100 IU	
Infant formula (8 oz)	100 IU	
Exposure to sunlight	3000 IU	

Excessive sun exposure & excessive food intake DO NOT cause Vitamin D toxicity

Toxicity most likely to occur from high intake of dietary supplements

TOXICITY

- Doses >50,000 IU can raise serum 25(OH)D to 300 ng/mL
- Doses >10,000 IU daily may cause kidney & tissue damage
- Doses of 5000 IU daily raised serum 25(OH)D to 100-150 ng/mL
 Leads to hypercalcemia, vascular & tissue calcification,
- damage to heart, kidney, and blood vessels
- Symptoms unlikely at daily intakes <10,000 IU (but there may be adverse effects over time)

TOLERABLE UPPER INTAKE LEVELS

Upper Intake
1000 IU
1500 IU
2500 IU
3000 IU
4000 IU
4000 IU

Generally, not recommended to take >2000 IU in supplement form without medical advice

IN SUMMARY...

- Vitamin D is a steroid hormone that is synthesized in the SKIN when activated by SUNLIGHT (UVB)
- Although Vitamin D is best known for its role in bone formation, receptors are found all over the body → NUMEROUS FUNCTIONS

